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Motivation 

●  A trained neural network can be a powerful tool for 
●  Pattern recognition 
●  Classification 
●  Clustering 
●  Others… 

●  Scaling Deep Learning (DL) training is also a tool for 
●  Models that take a very long time to train (and have a very large training 

dataset) 
●  Increasing the frequency at which models can be retrained with new or 

improved data 

●  This talk reviews scaling DL training and topics that can be 
important to successfully applying it 
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Agenda 

● De-mystifying Deep Learning 
 
●  TensorFlow on Theta (ß covered earlier today) 

 
● Parallelization Methods for TensorFlow 

● Convergence Considerations at Scale 
 

● CPE ML Plugin Example 
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De-mystifying Deep Learning 
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What is Deep Learning: A Specific Example 

●  An organic gardener is building a robot in his garage to recognize the 
10 insects found in his garden, and decide which ones to kill with a 
laser 

●  The robot will have a camera, and will capture JPEG files of the 
insects 

●  The robot needs a ‘program’ to classify each JPEG according to which 
of the 10 kinds of insect was photographed 

JPEG ‘Program’ 
“That’s a 
Japanese 
beetle”! 
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Inputs & Outputs 

● Our input is a JPEG 
●  224x224 pixels, 3 colors à a 224x224x3 

element vector of the pixel values 
● Our output is a classification 

●  One of 10 categories à a 10 element 
vector with a “1” in the position representing 
the category to which the image belongs 

How many “IF” statements will we 
need to figure out that a bunch of 
pixel values is a Japanese beetle? 

Bruce Marlin  
(CC BY 3.0: Attribution 3.0 Unported) 
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This is an Artificial Intelligence Problem 

●  If you can’t get the output from the input with a bunch 
of loops and conditionals, it’s AI 

● But, if that won’t work, how can we do it? 

● Hint #1: Any mapping of inputs to outputs is a function 
● Hint #2: A function can be approximated using a (good) 

approximating function 
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An Approximating Function 
 
● How can we determine a good approximating 

function? 
●  Choose its form (linear, polynomial, …) 
●  Minimize the overall error at a finite number of inputs with known 

outputs  - - fit the curve 
●  We have to find the values of the free parameters of the function that 

minimize the error – it doesn’t matter how we do it 

Fitting the curve is a lot like training the function 
to know the answer for arbitrary inputs 
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Training via Gradient Descent 
●  We want to approximate y=f(x) 

●  Find a function that maps a set of 
inputs to a set of outputs, to some 
level of accuracy 

●  We know yi=f(xi), for i=1,N 
●  Iterate: 

●  First iteration only: initialize the free 
parameters of f 

●  Calculate error (over N known points) 
●  Calculate gradient of error, as a 

function of the free parameters of f 
●  Adjust the free parameters of  f a 

‘small’ distance in the direction of 
negative of error gradient 

●  Assess convergence & stop when 
‘good enough’ 

Calculate 
gradient, using 

the entire 
training set 

Use gradient to 
update the 

model 

Converged? Done Yes 

No 
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A Really Useful Kind of Function 
●  This image shows a 

deep neural network 
●  An approximating 

function, with free 
parameters called 
weights and biases 

●  Deep networks have 
been found to be 
especially powerful 

●  Neural networks can 
approximate any 
continuous function 
arbitrarily well 

X

f(X) 
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HPC Attributes 

● DL training is a classic high-performance computing 
problem which demands: 
 
●  Large compute capacity in terms of FLOPs, memory capacity and 

bandwidth 
●  A performant interconnect for fast communication of gradients and 

model parameters 
●  Parallel I/O and storage with sufficient bandwidth to keep the 

compute fed at scale 
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●  Data parallel training divides a global mini-batch of examples across 
processes 

●  Each process computes gradients from their local mini-batch 
●  Average gradients across processes 
●  All processes update their local model with averaged gradients (all processes 

have the same model) 

 

●  Not shown is the I/O activity of reading training samples (and possible 
augmentation) 

Data Parallelism - Collective-based Synchronous 
SGD 

Compute 
intensive 

Communication 
intensive 

Typically not 
much compute 
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Why do we want to scale? 

●  Deep Network Training 
●  We can strong scale training time-to-accuracy provided 

●  Number of workers (e.g., # nodes) << number of training examples 
●  Learning rate for particular batch size / scale is known 

●  Hyper-Parameter Optimization 
●  For problems and datasets where baseline accuracy is not known 

●  learning rate schedule 
●  momentum 
●  batch size 

●  Evolve topologies if good architecture is unknown (common with novel 
datasets / mappings)  
●  Layer types, width, number filters 
●  Activation functions, drop-out rates 
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Parallelization Methods for DL 
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Parallelization Techniques 

●  Data Parallelism 
●  As described earlier, divides global mini-batch among processes 
●  Two methods for this: 

●  Synchronous: single model (possibly replicated across all processes) updated with 
globally averaged gradients every iteration 

●  Asynchronous: processes provide gradients every iteration but are allowed to fall out 
of sync from one another.  Processes each have their own model that may or may 
not be the same as any other process 

●  Model Parallelism 
●  Single model with layers decomposed across processes 
●  Activations communicated between processes 

●  This talk will focus on synchronous data parallel approach  
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Distributed TensorFlow 

●  TensorFlow has a native method for parallelism across nodes 
●  ClusterSpec API 
●  Uses gRPC layer in TensorFlow based on sockets 

●  Can be difficult to use and optimize 

●  User must specify 
●  hostnames and ports for all worker processes 
●  hostnames and ports for all parameter server processes (see next slide) 
●  # of workers 
●  # of parameter server processes 
●  Chief process of workers 
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Distributed TensorFlow 

●  Number of parameter 
servers (PS) processes to 
use is not clear 
●  Too few results in many-to-

few comm pattern (very bad) 
and stalls delivering updated 
parameters 

●  Too many results in many-to-
many comm patter (also bad) 

●  Users typically have to pick 
a scale and experiment for 
best performance 
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Distributed TensorFlow Scaling on Cray XC40 - KNL 
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MPI-based Data Parallel TensorFlow 

●  The performance and usability issues with distributed TensorFlow 
can be addressed by adopting an MPI communication model 

●  TensorFlow does have an MPI option, but it only replaces point to 
point operations in gRPC with MPI 
●  Collective algorithm optimization in MPI not used 

●  Other frameworks, such as Caffe and CNTK, include MPI 
collectives 

●  An MPI collective based approach would eliminate the need for PS 
processes and likely be optimized without intervention from the 
user 
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Scalable Synchronous Data Parallelism 

input 

model 

input 

model 

input 

model 

Update Update Update 

add add add Scalable Global Add 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.  

Device 1 Device 2 Device n 

P P P

ΔP 
Client Client Client 

● Note there are no PS processes in this model 
● Resources dedicated to gradient calculation 
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Uber Horovod 
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●  Uber open source addon for TensorFlow, PyTorch, 
and Keras-on-TF that replaces native optimizer 
class with a new class 
●  Horovod adds an allreduce between gradient computation 

and model update in this class 

●  New Python class includes NCCL and MPI 
collective reductions for gradient aggregation 

●  https://github.com/uber/horovod 

●  No modifications to TensorFlow source required 
●  User modifies Python training script instead 
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Cray Programming Environment Machine Learning 
Plugin (CPE ML Plugin) 
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●  DL communication plugin with Python and C APIs 

●  Originally developed for TensorFlow but also portable to other frameworks 
(PyTorch and Keras tested) 
●  Callable from C/C++ source 
●  Called from Python if data stored in NumPy arrays or Tensors 

●  Like Horovod does not require modification to TensorFlow source 
●  User modifies training script 

●  Uses custom allreduce specifically optimized for DL workloads 
●  Optimized for Cray Aries interconnect and IB for Cray clusters 

●  Tunable through API and environment variables 

●  Supports multiple gradient aggregations at once with thread teams 
●  Useful for Generative Adversarial Networks (GAN), for example 
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Horovod / CPE ML Plugin – Throughput Scaling 
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Convergence Considerations at 
Scale 
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Problems in Scaling DL Training 

●  Increasing workers increases the global batch size 
●  This reduces the number of updates to the model (iterations) per 

epoch (full pass through dataset) 
●  Can require more iterations to converge to same validation accuracy 

for models trained at smaller batch sizes 

●  Large-batch (LB) training can have different convergence 
properties than Small-batch (SB) training 
●  LB training can lead to models which fail to generalize to validation 

datasets 
●  LB training error can look similar to SB training error, but validation 

error fails to improve 
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Problems in Scaling DL Training 

● Possible reasons for the observed failure to generalize 
using large batch methods [2]: 
●  The model overfits 
●  Optimization is attracted to saddle-points 
●  Loss of the explorative properties gained with small batches 

 

27 



ALCF SDL Workshop 2018 Cray Inc. © 2018 

Observations on Scaled Learning Rates 
●  Step 1) Start with common initial learning rate for selected optimizer (from Keras documentation) 

●  Adam -> 0.001 
●  RMSProp -> 0.001 
●  SGD -> 0.01 
●  Adagrad -> 0.01 
●  Adadelta -> 1.0 
 

●  Step 2) Multiply learning rate by N or Sqrt(N) 
●  N is the number of parallel processes 
●  Discussed in further detail on next slide 

●  Step 3) Decay learning rate during training (e.g., exponential decay) 
●  Setup a learning rate schedule using your initial learning rate as the starting state 
●  Learning rate typically lowered periodically or continuously 
●  Helps improve final accuracy 
●  Likely very important to reduce learning rate over time when initial learning rate scaled large 

 
●  Step 4) Run it 

●  Train and observe loss or training accuracy, check validation accuracy 
●  Adjust initial learning rate up if learning too slowly or down if model is not learning 
●  Repeat steps as needed to improve convergence and accuracy 
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Learning Rate Scaling Rules 
●  Sqrt Scaling Rule:  

●  When the local minibatch size is multiplied by 𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠 , multiply the learning rate by √𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠  .  

𝜂↓𝑖𝑛𝑖𝑡 =𝜂↓𝑖𝑛𝑖𝑡 ∗√𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠   
 

●  Error on the mean only improves as sqrt(N_workers) 

●  Linear Scaling Rule:  
●  When the minibatch size is multiplied by N, multiply the learning rate by N.  

𝜂↓𝑖𝑛𝑖𝑡 =𝜂↓𝑖𝑛𝑖𝑡 ∗𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠  
 

●  Naïve rule for scaling learning rate in distributed training but it works for some problems 
●  More attractive (when it works) because it shouldn’t require many additional iterations to reach same 

accuracy 
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Other Considerations 

●  Linearly scaled learning rate causes most problems 
early in training [3] 
●  Design a warm-up set of iterations to reduce these errors 
●  Once training settled on good path, transition to larger learning 

rate 
● SGD momentum can be useful at scale [1] 
●  Layer-wise Adaptive Rate Scaling (LARS) allows 

different learning rates at each layer [1] 
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Useful References 

[1] LARGE BATCH TRAINING OF CONVOLUTIONAL NETWORKS -- 
https://arxiv.org/pdf/1708.03888.pdf  
 
[2] ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP 
AND SHARP MINIMA -- https://openreview.net/pdf?id=H1oyRlYgg  
 
[3] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour -- 
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf  
 
[4] Train longer, generalize better: closing the generalization gap in large batch 
training of neural networks -- https://arxiv.org/pdf/1705.08741.pdf  
 
[5] Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 
Minutes -- https://arxiv.org/pdf/1711.04325.pdf  
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CPE ML Plugin Example 
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Training Script Modifications 

●  Both Horovod and CPE ML Plugin require some 
modifications to a serial training script 

●  For the CPE ML Plugin the changes are 
●  Importing the Python module 
●  Initialize the module 

●  Possibly configure the thread team(s) for specific uses 
●  Broadcast initial model parameters 
●  Incorporate gradient aggregation between gradient computation and 

model update 
●  Finalize the Python module 
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MNIST Example 

●  Dataset of handwritten digits from 0-9 
●  Simple CNN can be used to identify handwritten digits 

●  This example is adapted from the TensorFlow official MNIST example 
●  https://github.com/tensorflow/models/tree/master/official/mnist 
●  Modified script included with CPE ML Plugin 

●  module load /projects/datascience/kristyn/modulefiles/craype-
ml-plugin-py3/1.1.2 

●  module load tensorflow 
●  less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py 
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CPE ML Plugin – Execution Example 

● Once the script is modified job launch is just like a 
typical MPI job 

 
module load /projects/datascience/kristyn/modulefiles/craype-ml-plugin-py3/1.1.2 
module load tensorflow 
 

aprun -n4 -N1 -cc none -b python \ 
$CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py \ 

--enable_ml_comm \ 

--data_dir=/lus/theta-fs0/projects/SDL_Workshop/mendygra/mnist_data \ 
--model_dir=[train dir] 
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Thank You! 

Questions? 
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Backup 
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CPE ML Plugin - Import 
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● Access the Python API by importing the module 
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CPE ML Plugin - Initialization 

● Compute the number of trainable variables in the 
model 
●  Required for the CPE ML Plugin to pre-allocate needed 

communication buffers 
●  Example sets up a single thread team with one thread 
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CPE ML Plugin – Team Configuration 

● Set the maximum number of steps (mini batches) to 
train for 
●  Verbose output every 200 steps 

● Also set output path to rank-specific location 
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CPE ML Plugin – Broadcast Initial Model 

● Broadcast initial model parameter values from rank 0 
to all other ranks 

●  Then assign broadcasted values locally 
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CPE ML Plugin – Gradient Aggregation 

● Perform gradient averaging across all ranks between 
local gradient calculation and model update 
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CPE ML Plugin – Finalize 

● After all training steps are complete clean up data 
structures and MPI 
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